Weighing Designs when $n$ is Odd

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When double rounding is odd

Many general purpose processors (including Intel’s) may not always produce the correctly rounded result of a floating-point operation due to double rounding. Instead of rounding the value to the working precision, the value is first rounded in an intermediate extended precision and then rounded in the working precision; this often means a loss of accuracy. We suggest the use of rounding to odd ...

متن کامل

Creating Semi-Magic, Magic and Extra Magic n× n Squares when n is Odd

We define a simple algorithm for creating large numbers of semi-magic n× n squares when n is odd. Special cases of the algorithm can also be used to easily create magic and extra magic (or panmagic) n× n squares when n is odd. The algorithm can also create extremely magic n × n squares when n ≥ 5 is prime. These extremely magic n × n squares have n! standard magic n-element subsets, and these n...

متن کامل

New orthogonal designs from weighing matrices

In this paper we show the existence of new orthogonal designs, based on a number of new weighing matrices of order 2n and weights 2n − 5 and 2n−9 constructed from two circulants. These new weighing matrices were constructed recently by establishing various patterns on the locations of the zeros in a potential solution, in conjunction with the power spectral density criterion. We also demonstrat...

متن کامل

Weighing Designs and Methods of Construction

Abstract: It is difficult to weigh the light objects by weighing balance accurately when measured individually. If several light objects are weighed in groups rather than individually then the precision of the estimates increases quite considerably. There are two types of balances one is chemical balance and other is spring balance. Spring balance is similar when only one pan of chemical balanc...

متن کامل

D - optimal weighing designs for n ≡ − 1 ( mod 4 ) objects and a large number of weighings

Let Mm,n(0, 1) denote the set of all m× n (0,1)-matrices and let G(m,n) = max{detXX : X ∈Mm,n(0, 1)}. In this paper we exhibit some new formulas for G(m,n) where n ≡ −1 (mod 4). Specifically, for m = nt+r where 0 ≤ r < n, we show that for all sufficiently large t, G(nt+r, n) is a polynomial in t of degree n that depends on the characteristic polynomial of the adjacency matrix of a certain regul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematical Statistics

سال: 1966

ISSN: 0003-4851

DOI: 10.1214/aoms/1177699281